The nonlinear Schrödinger equation on metric graphs Brown-Yale PDE seminar

Damien Galant

CERAMATHS/DMATHS

Département de Mathématique

Université Polytechnique Hauts-de-France Université de Mons F.R.S.-FNRS Research Fellow

Joint work with Colette De Coster (CERAMATHS/DMATHS, Valenciennes, France), Christophe Troestler (UMONS, Mons, Belgium), Simone Dovetta and Enrico Serra (Politecnico di Torino, Italy)

Saturday 12 April 2025

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □
----------	---------------	-----	---------------	---------------------------------	------------------------

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □
----------	---------------	-----	---------------	---------------------------------	------------------------

First of all, let me thank:

Javier Gómez-Serrano and Benoît Pausader;

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □
----------	---------------	-----	---------------	---------------------------------	------------------------

- Javier Gómez-Serrano and Benoît Pausader;
- Justin Holmer;

- Javier Gómez-Serrano and Benoît Pausader;
- Justin Holmer;
- Antonio J. Fernández (Universidad Autónoma de Madrid);

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message
-					

- Javier Gómez-Serrano and Benoît Pausader;
- Justin Holmer;
- Antonio J. Fernández (Universidad Autónoma de Madrid);
- my coauthors;

- Javier Gómez-Serrano and Benoît Pausader;
- Justin Holmer;
- Antonio J. Fernández (Universidad Autónoma de Madrid);
- my coauthors;
- the Belgian American Educational Fundation (BAEF), the Belgian Fund for Scientific Research (F.R.S.–FNRS) and the University of Mons (UMONS);

First of all, let me thank:

- Javier Gómez-Serrano and Benoît Pausader;
- Justin Holmer;
- Antonio J. Fernández (Universidad Autónoma de Madrid);
- my coauthors;
- the Belgian American Educational Fundation (BAEF), the Belgian Fund for Scientific Research (F.R.S.–FNRS) and the University of Mons (UMONS);

you!

A metric graph is made of vertices

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

metric graphs: the lengths of edges are important.

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

metric graphs: the lengths of edges are important.

the edges going to infinity are halflines and have *infinite length*.

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- *metric* graphs: the lengths of edges are important.
- the edges going to infinity are halflines and have *infinite length*.
- a metric graph is *compact* if and only if it has a finite number of edges of finite length.

Constructions based on halflines

The halfline

Constructions based on halflines

Constructions based on halflines

Constructions based on halflines

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Periodic graphs

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Infinite trees

Figure: Infinite trees

A metric graph G with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3)

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$, and the three associated real functions.

A metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f : \mathcal{G} \to \mathbb{R}$, and the three associated real functions.

$$\int_{\mathcal{G}} f \, \mathrm{d}x := \int_0^5 f_0(x) \, \mathrm{d}x + \int_0^4 f_1(x) \, \mathrm{d}x + \int_0^3 f_2(x) \, \mathrm{d}x$$

Why studying metric graphs? Physical motivations

Modeling structures where only one spatial direction is important.

A "fat graph" and the underlying metric graph

$$\begin{cases} -u'' + \lambda u = |u|^{p-2}u & \text{on each edge } e \text{ of } \mathcal{G}, \\ \\ & \text{(NLS}_{\mathcal{G}}) \end{cases}$$

$$\begin{aligned} & (-u'' + \lambda u = |u|^{p-2}u & \text{ on each edge } e \text{ of } \mathcal{G}, \\ & u \text{ is continuous} & \text{ for every vertex } v \text{ of } \mathcal{G}, \end{aligned}$$
 (NLS_G)

$$\begin{cases} -u'' + \lambda u = |u|^{p-2}u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ v} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$
(NLS_G)

Given constants p > 2 and $\lambda > 0$, we are interested in solutions $u \in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} -u'' + \lambda u = |u|^{p-2}u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex } v \text{ of } \mathcal{G}, \\ \sum_{e \succ V} \frac{\mathrm{d}u}{\mathrm{d}x_e}(v) = 0 & \text{for every vertex } v \text{ of } \mathcal{G}, \end{cases}$$
(NLS_G)

The condition on the sum of derivatives is called *Kirchhoff's condition*.

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Kirchhoff's condition: degree-one nodes

Kirchhoff's condition in general: outgoing derivatives

The soliton φ_{λ} on the real line

The set of nonzero solutions of $(NLS_{\mathcal{G}})$ is

$$\mathcal{S}_\lambda(\mathbb{R}) = \left\{\pm arphi_\lambda(x+\mathsf{a}) \; \Big| \; \mathsf{a} \in \mathbb{R}
ight\}$$

where the soliton φ_{λ} is the unique positive and even solution to

$$-u'' + \lambda u = |u|^{p-2}u.$$

The soliton φ_{λ} on the real line

The set of nonzero solutions of $(NLS_{\mathcal{G}})$ is

$$\mathcal{S}_\lambda(\mathbb{R}) = \left\{\pm arphi_\lambda(x+\mathsf{a}) \; \Big| \; \mathsf{a} \in \mathbb{R}
ight\}$$

where the *soliton* φ_{λ} is the unique positive and even solution to

$$-u'' + \lambda u = |u|^{p-2}u.$$

The nonlinear Schrödinger equation

The soliton φ_{λ} on the real line

The set of nonzero solutions of $(NLS_{\mathcal{G}})$ is

$$\mathcal{S}_\lambda(\mathbb{R}) = \left\{\pm arphi_\lambda(x+\mathsf{a}) \; \Big| \; \mathsf{a} \in \mathbb{R}
ight\}$$

where the *soliton* φ_{λ} is the unique positive and even solution to

$$-u'' + \lambda u = |u|^{p-2}u.$$

The nonlinear Schrödinger equation The half-line: $\mathcal{G} = \mathbb{R}^+$

$$\mathcal{S}_{\lambda}(\mathbb{R}^+) = \left\{\pm \varphi_{\lambda}(x)_{|\mathbb{R}^+}
ight\}$$

Solutions are *half-solitons*: no more translations!
The nonlinear Schrödinger equation

The positive solution on the 3-star graph

The nonlinear Schrödinger equation

The nonlinear Schrödinger equation

The nonlinear Schrödinger equation

The nonlinear Schrödinger equation

The nonlinear Schrödinger equation

The nonlinear Schrödinger equation

Variational formulation

We work on the Sobolev space

$$H^1(\mathcal{G}) := \Big\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous}, u, u' \in L^2(\mathcal{G}) \Big\}.$$

Variational formulation

We work on the Sobolev space

$$H^1(\mathcal{G}) := \Big\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous}, u, u' \in L^2(\mathcal{G}) \Big\}.$$

Solutions of $(NLS_{\mathcal{G}})$ correspond to critical points of the action functional

$$J_{\lambda}(u) := rac{1}{2} \|u'\|_{L^2(\mathcal{G})}^2 + rac{\lambda}{2} \|u\|_{L^2(\mathcal{G})}^2 - rac{1}{p} \|u\|_{L^p(\mathcal{G})}^p.$$

Variational formulation

We work on the Sobolev space

$$H^1(\mathcal{G}) := \Big\{ u : \mathcal{G}
ightarrow \mathbb{R} \mid u ext{ is continuous}, u, u' \in L^2(\mathcal{G}) \Big\}.$$

Solutions of $(\mathrm{NLS}_\mathcal{G})$ correspond to critical points of the action functional

$$J_{\lambda}(u) := \frac{1}{2} \|u'\|_{L^{2}(\mathcal{G})}^{2} + \frac{\lambda}{2} \|u\|_{L^{2}(\mathcal{G})}^{2} - \frac{1}{p} \|u\|_{L^{p}(\mathcal{G})}^{p}.$$

The level of the soliton φ_{λ} plays an important role in our analysis:

$$s_{\lambda} := J_{\lambda}(\varphi_{\lambda}).$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda} : H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If φ has compact support in the interior of an edge e = AB, we have...

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If arphi has compact support in the interior of an edge $e={}_{\mathrm{AB}}$, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If arphi has compact support in the interior of an edge $e={}_{\mathrm{AB}}$, we have

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\int_{e} u'(x)\varphi'(x) dx + \lambda \int_{e} u(x)\varphi(x) dx - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) dx$
= $\frac{du}{dx_{e}}(b)\underbrace{\varphi(b)}_{=0} - \frac{du}{dx_{e}}(a)\underbrace{\varphi(a)}_{=0}$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If arphi has compact support in the interior of an edge $e={}_{\mathrm{AB}}$, we have

$$\begin{aligned} 0 &= J'_{\lambda}(u)[\varphi] \\ &= \int_{e} u'(x)\varphi'(x) \,\mathrm{d}x + \lambda \int_{e} u(x)\varphi(x) \,\mathrm{d}x - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) \,\mathrm{d}x \\ &= \frac{\mathrm{d}u}{\mathrm{d}x_{e}}(b)\underbrace{\varphi(b)}_{=0} - \frac{\mathrm{d}u}{\mathrm{d}x_{e}}(a)\underbrace{\varphi(a)}_{=0} \\ &+ \int_{e} (-u''(x) + \lambda u(x) - |u(x)|^{p-2}u(x))\varphi(x) \,\mathrm{d}x. \end{aligned}$$

The Euler-Lagrange equation associated to J_{λ}

The differential of $J_{\lambda}: H^1(\mathcal{G}) \to \mathbb{R}$ is given by

$$J'_{\lambda}(u)[v] = \int_{\mathcal{G}} u'(x)v'(x) \,\mathrm{d}x + \lambda \int_{\mathcal{G}} u(x)v(x) \,\mathrm{d}x - \int_{\mathcal{G}} |u(x)|^{p-2}u(x)v(x) \,\mathrm{d}x$$

If arphi has compact support in the interior of an edge $e={}_{\mathrm{AB}}$, we have

$$\begin{split} 0 &= J'_{\lambda}(u)[\varphi] \\ &= \int_{e} u'(x)\varphi'(x) \,\mathrm{d}x + \lambda \int_{e} u(x)\varphi(x) \,\mathrm{d}x - \int_{e} |u(x)|^{p-2}u(x)\varphi(x) \,\mathrm{d}x \\ &= \frac{\mathrm{d}u}{\mathrm{d}x_{e}}(b)\underbrace{\varphi(b)}_{=0} - \frac{\mathrm{d}u}{\mathrm{d}x_{e}}(a)\underbrace{\varphi(a)}_{=0} \\ &+ \int_{e} (-u''(x) + \lambda u(x) - |u(x)|^{p-2}u(x))\varphi(x) \,\mathrm{d}x. \end{split}$$

so that $-u'' + \lambda u = |u|^{p-2}u$ on edges of \mathcal{G} .

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A.

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$.

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

 $0 = J'_{\lambda}(u)[\varphi]$

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\sum_{1 \le i \le D} \left(\int_{e_i} u' \varphi' \, \mathrm{d}x + \lambda \int_{e_i} u \varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2} u \varphi \, \mathrm{d}x \right)$

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\sum_{1 \le i \le D} \left(\int_{e_i} u'\varphi' \, \mathrm{d}x + \lambda \int_{e_i} u\varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2} u\varphi \, \mathrm{d}x \right)$
= $\sum_{1 \le i \le D} \left(\frac{\mathrm{d}u}{\mathrm{d}x_{e_i}}(b_i) \underbrace{\varphi(b_i)}_{=0} - \frac{\mathrm{d}u}{\mathrm{d}x_{e_i}}(a_i) \underbrace{\varphi(a)}_{=1} \right)$

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

Kirchhoff's condition

Let A be a vertex of \mathcal{G} and let B_1, \ldots, B_D be the vertices adjacent to A. Define φ so that it is affine on all edges of \mathcal{G} , $\varphi(A) = 1$ and $\varphi(V) = 0$ for all vertices $V \neq A$. Denote $e_i := AB_i$. Then,

$$0 = J'_{\lambda}(u)[\varphi]$$

= $\sum_{1 \le i \le D} \left(\int_{e_i} u'\varphi' \, \mathrm{d}x + \lambda \int_{e_i} u\varphi \, \mathrm{d}x - \int_{e_i} |u|^{p-2}u\varphi \, \mathrm{d}x \right)$
= $\sum_{1 \le i \le D} \left(\frac{\mathrm{d}u}{\mathrm{d}x_{e_i}}(b_i) \underbrace{\varphi(b_i)}_{=0} - \frac{\mathrm{d}u}{\mathrm{d}x_{e_i}}(a_i) \underbrace{\varphi(a)}_{=1} \right)$
+ $\sum_{1 \le i \le D} \int_{e_i} \left(\underbrace{-u'' + \lambda u - |u|^{p-2}u}_{=0} \right) \varphi(x) \, \mathrm{d}x$

so that $\sum_{1 \le i \le D} \frac{du}{dx_{e_i}}(A_i) = 0$, which is Kirchhoff's condition.

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu)=rac{t^2}{2}\|u'\|_{L^2(\mathcal{G})}^2+rac{\lambda t^2}{2}\|u\|_{L^2(\mathcal{G})}^2-rac{t^p}{p}\|u\|_{L^p(\mathcal{G})}^p\xrightarrow[t o\infty]{}-\infty.$$

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{\lambda t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$\begin{split} \mathcal{N}_{\lambda}(\mathcal{G}) &:= \Big\{ u \in H^1(\mathcal{G}) \setminus \{0\} \mid J_{\lambda}'(u)[u] = 0 \Big\} \\ &= \Big\{ u \in H^1(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^2(\mathcal{G})}^2 + \lambda \|u\|_{L^2(\mathcal{G})}^2 = \|u\|_{L^p(\mathcal{G})}^p \Big\}. \end{split}$$

The Nehari manifold

The functional J_{λ} is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{\lambda t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G})$, defined by

$$\begin{split} \mathcal{N}_{\lambda}(\mathcal{G}) &:= \Big\{ u \in \mathcal{H}^{1}(\mathcal{G}) \setminus \{0\} \mid J_{\lambda}'(u)[u] = 0 \Big\} \\ &= \Big\{ u \in \mathcal{H}^{1}(\mathcal{G}) \setminus \{0\} \mid \|u'\|_{L^{2}(\mathcal{G})}^{2} + \lambda \|u\|_{L^{2}(\mathcal{G})}^{2} = \|u\|_{L^{p}(\mathcal{G})}^{p} \Big\}. \end{split}$$

If $u \in \mathcal{N}_{\lambda}(\mathcal{G})$, then

$$J_{\lambda}(u) = \Big(rac{1}{2} - rac{1}{p}\Big) \|u\|_{L^p(\mathcal{G})}^p.$$

In particular, J_{λ} is bounded from below on $\mathcal{N}_{\lambda}(\mathcal{G})$.

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message

Action ground states

• "Ground state" action level:

$$\mathcal{J}_\mathcal{G}(\lambda) := \inf_{u \in \mathcal{N}_\lambda(\mathcal{G})} J_\lambda(u)$$

Action ground states

Ground state" action level:

$$\mathcal{J}_\mathcal{G}(\lambda) := \inf_{u \in \mathcal{N}_\lambda(\mathcal{G})} J_\lambda(u)$$

Ground state: function u ∈ N_λ(G) with level J_G(λ). If it exists, it is a solution of the differential system (NLS_G).

A very useful tool: cutting solitons on halflines

Proposition

Assume that \mathcal{G} has at least one halfline. Then,

 $\mathcal{J}_{\mathcal{G}}(\lambda) \leq s_{\lambda} := J_{\lambda}(\varphi_{\lambda})$

A very useful tool: cutting solitons on halflines

Proposition

Assume that \mathcal{G} has at least one halfline. Then,

 $\mathcal{J}_{\mathcal{G}}(\lambda) \leq s_{\lambda} := J_{\lambda}(\varphi_{\lambda})$

An existence Theorem

Theorem (Adami-Serra-Tilli 2015, Dovetta-De Coster-G.-Serra-Troestler 2024)

Let G be a metric graph with finitely many edges, including at least one halfline. Let p > 2 and $\lambda > 0$ be real numbers. If,

$$\mathcal{J}_{\mathcal{G}}(\lambda) < s_{\lambda}$$

then action ground states exist.

Some graphs which admit action ground states

Figure: Examples of graphs admitting action ground states. (a): the \mathcal{T} -graph; (b): the signpost; (c): the tadpole; (d): the 3-fork.

Decreasing rearrangement on the halfline

For all $1 \leq p \leq +\infty$,

 $||u||_{L^{p}(\mathcal{G})} = ||u^{*}||_{L^{p}(0,|\mathcal{G}|)}.$
Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Then its decreasing rearrangement u^* belongs to $H^1(0, |\mathcal{G}|)$, and one has

 $\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \le \|u'\|_{L^2(\mathcal{G})}.$

- Pólya, G., Szegő, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton University Press. (1951).
- Duff, G. Integral Inequalities for Equimeasurable Rearrangements. Canadian Journal of Mathematics 22 (1970), no. 2, 408–430.

Friedlander, L. *Extremal properties of eigenvalues for a metric graph.* Ann. Inst. Fourier (Grenoble) **55** (2005) no. 1, 199–211. Foreword Metric graphs NLS Ground states Another notion of ground state? Take-home message

The Pólya–Szegő inequality A simple case: affine functions

We assume that u is piecewise affine.

The Pólya–Szegő inequality A simple case: affine functions

We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

Damien Galant

The Pólya–Szegő inequality A simple case: affine functions

We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

Damien Galant

The Pólya–Szegő inequality A simple case: affine functions

We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

Damien Galant

The Pólya–Szegő inequality A simple case: affine functions

We assume that u is piecewise affine.

We consider a small open interval $I \subseteq u(\mathcal{G})$ so that $u^{-1}(I)$ consists of a disjoint union of open intervals on which u is affine.

Damien Galant

The nonlinear Schrödinger equation on metric graphs

Foreword Metric graphs NLS Ground states Another notion of ground state? Take-home message

The Pólya–Szegő inequality A simple case: affine functions

Original contribution to $||u'||_{L^2}^2$:

$$\mathsf{A} := \ell_1 \frac{|\mathcal{I}|^2}{\ell_1^2} + \ell_2 \frac{|\mathcal{I}|^2}{\ell_2^2} + \ell_3 \frac{|\mathcal{I}|^2}{\ell_3^2} + \ell_4 \frac{|\mathcal{I}|^2}{\ell_4^2}$$

Foreword Metric graphs NLS Ground states Another notion of ground state? Take-home message

The Pólya–Szegő inequality A simple case: affine functions

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Metric graphs NLS Ground states Another notion of ground state? Take-home message

The Pólya–Szegő inequality A simple case: affine functions

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Foreword

Metric graphs NLS Ground states Another notion of ground state? Take-home message

The Pólya–Szegő inequality A simple case: affine functions

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}}$$

Foreword

Metric graphs NLS Ground states Another notion of ground state? Take-home message

The Pólya–Szegő inequality A simple case: affine functions

Original contribution to $||u'||_{L^2}^2$:

$$A := \ell_1 \frac{|I|^2}{\ell_1^2} + \ell_2 \frac{|I|^2}{\ell_2^2} + \ell_3 \frac{|I|^2}{\ell_3^2} + \ell_4 \frac{|I|^2}{\ell_4^2} = \frac{|I|^2}{\ell_1} + \frac{|I|^2}{\ell_2} + \frac{|I|^2}{\ell_3} + \frac{|I|^2}{\ell_4}$$

Contribution to $||(u^*)'||_{L^2}^2$:

$$B := \frac{|I|^2}{\ell_1 + \ell_2 + \ell_3 + \ell_4}$$

Inequality between arithmetic and harmonic means:

$$\frac{\ell_1 + \ell_2 + \ell_3 + \ell_4}{4} \geq \frac{4}{\frac{1}{\ell_1} + \frac{1}{\ell_2} + \frac{1}{\ell_3} + \frac{1}{\ell_4}} \quad \Rightarrow \quad A \geq 4^2 B \geq B.$$

Foreword

Proposition

Let G be a metric graph with finitely many edges, including at least one halfline. Let p > 2 and $\lambda > 0$ be real numbers. Then,

$$\mathcal{J}_\mathcal{G}(\lambda) \geq rac{1}{2} J_\lambda(arphi_\lambda).$$

Proof.

One may assume that $u \ge 0$.

Proof.

One may assume that $u \ge 0$. Then,

$$\begin{split} \|u^*\|_{L^2(0,+\infty)} &= \|u\|_{L^2(\mathcal{G})}, \\ \|u^*\|_{L^p(0,+\infty)} &= \|u\|_{L^p(\mathcal{G})}, \\ \|(u^*)'\|_{L^2(0,+\infty)} \leq \|u'\|_{L^2(\mathcal{G})}. \end{split}$$

Proof.

One may assume that $u \ge 0$. Then,

$$\begin{split} \|u^*\|_{L^2(0,+\infty)} &= \|u\|_{L^2(\mathcal{G})},\\ \|u^*\|_{L^p(0,+\infty)} &= \|u\|_{L^p(\mathcal{G})},\\ \|(u^*)'\|_{L^2(0,+\infty)} \leq \|u'\|_{L^2(\mathcal{G})}. \end{split}$$

Then, one shows that for a suitable t > 0, the function tu^* belongs to $\mathcal{N}_{\lambda}(0, +\infty)$ and is such that

$$J_{\lambda,\mathcal{G}}(u) \geq J_{\lambda,[0,+\infty[}(tu^*).$$

 Foreword
 Metric graphs
 NLS
 Ground states
 Another notion of ground state?
 Take-home message

A refined Pólya–Szegő inequality...

... or the importance of the number of preimages

Theorem

Let $u \in H^1(\mathcal{G})$ be a nonnegative function. Let $N \ge 1$ be an integer. Assume that, for almost every $t \in]0, ||u||_{\infty}[$, one has

$$u^{-1}({t}) = {x \in \mathcal{G} \mid u(x) = t} \ge N.$$

Then one has

$$\|(u^*)'\|_{L^2(0,|\mathcal{G}|)} \leq \frac{1}{N} \|u'\|_{L^2(\mathcal{G})}.$$

Definition (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized} by arclength, with disjoint images except for an at most countable number of points, and such that <math>\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized} by arclength, with disjoint images except for an at most countable number of points, and such that <math>\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized})$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized})$ by arclength, with disjoint images except for an at most countable number of points, and such that $\gamma_1(0) = \gamma_2(0) = x_0$.

Definition (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

We say that a metric graph \mathcal{G} satisfies assumption (H) if, for every point $x_0 \in \mathcal{G}$, there exist two injective curves $\gamma_1, \gamma_2 : [0, +\infty[\rightarrow \mathcal{G} \text{ parameterized} by arclength, with disjoint images except for an at most countable number of points, and such that <math>\gamma_1(0) = \gamma_2(0) = x_0$.

Consequence: all nonnegative $H^1(\mathcal{G})$ functions have at least two preimages for almost every $t \in]0, ||u||_{\infty}[$.

Non-existence of ground states

Theorem (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

If a metric graph \mathcal{G} satisfies assumption (H), then

 $\mathcal{J}_{\mathcal{G}}(\lambda) = s_{\lambda}$

but it is never achieved

Non-existence of ground states

Theorem (Adami, Serra, Tilli (Calc. Var. PDEs. 2014))

If a metric graph \mathcal{G} satisfies assumption (H), then

$$\mathcal{J}_{\mathcal{G}}(\lambda) = s_{\lambda}$$

but it is never achieved, unless G is isometric to one of the exceptional graphs depicted in the next two slides.

Foreword Metric graphs NLS Ground states Another notion of ground state? Take-home message

Non-existence of ground states Exceptional graphs: the real line

Foreword Metric graphs NLS Ground states Another notion of ground state? Take-home message

Non-existence of ground states Exceptional graphs: the real line with a tower of circles

Another action level

■ Minimal level attained by the solutions of (NLS_G):

$$\sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\mathcal{G}}(\lambda)} J_{\lambda}(u).$$

Another action level

Minimal level attained by the solutions of (NLS_G):

$$\sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\mathcal{G}}(\lambda)} J_{\lambda}(u).$$

 Minimal action solution: solution u ∈ S_G(λ) of the differential system (NLS_G) of level σ_λ(G).

Foreword Me	etric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □
-------------	--------------	-----	---------------	---------------------------------	------------------------

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □

An analysis shows that four cases are possible:

A1) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;

Foreword	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □

- A1) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;

- A1) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G})$, $\sigma_{\lambda}(\mathcal{G})$ is attained but not $\mathcal{J}_{\mathcal{G}}(\lambda)$;

Foreword □	Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □

- A1) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G})$, $\sigma_{\lambda}(\mathcal{G})$ is attained but not $\mathcal{J}_{\mathcal{G}}(\lambda)$;
- B2) $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

An analysis shows that four cases are possible:

- A1) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;
- A2) $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;
- B1) $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G}), \sigma_{\lambda}(\mathcal{G})$ is attained but not $\mathcal{J}_{\mathcal{G}}(\lambda)$;
- B2) $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (Calc. Var. PDEs. 2023))

For every p > 2, every $\lambda > 0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph G where this alternative occurs.
Foreword Metric graphs	NLS	Ground states	Another notion of ground state?	Take-home message □
------------------------	-----	---------------	---------------------------------	------------------------

Case A1 $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Foreword Met	ric graphs NLS	Ground states	Another notion of ground state?	Take-home message □
--------------	----------------	---------------	---------------------------------	------------------------

Case A1 $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Foreword Met	ric graphs NLS	Ground states	Another notion of ground state?	Take-home message □
--------------	----------------	---------------	---------------------------------	------------------------

Case A1 $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Case A1 $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained

Case B1 $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G}), \ \sigma_{\lambda}(\mathcal{G})$ is attained but not $\mathcal{J}_{\mathcal{G}}(\lambda)$

N-star graphs, $N \ge 3$

$$s_{\lambda} = \mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G}) = \frac{N}{2}s_{\lambda}$$

Case A2 $\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

Case B2 $\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

"nice" Sobolev embeddings

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

• "nice" Sobolev embeddings, H¹ functions are continuous;

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H^1 functions are continuous;
- counting preimages and the refined Pólya–Szegő inequality;

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H^1 functions are continuous;
- counting preimages and the refined Pólya–Szegő inequality;
- ODE techniques;

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

- "nice" Sobolev embeddings, H^1 functions are continuous;
- counting preimages and the refined Pólya–Szegő inequality;
- ODE techniques;
- ...;

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages and the refined Pólya–Szegő inequality;
- ODE techniques;

...;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur.

Why studying metric graphs? Mathematical motivations

Main message

Metric graphs allow to study interesting *one dimensional* problems and are much richer than the usual class of intervals of \mathbb{R} .

Dimension one has many advantages:

- "nice" Sobolev embeddings, H¹ functions are continuous;
- counting preimages and the refined Pólya–Szegő inequality;
- ODE techniques;

...;

Replacing \mathcal{G} by noncompact smooth open sets $\Omega \subseteq \mathbb{R}^d$, $d \geq 2$ and $H^1(\mathcal{G})$ by $H^1(\Omega)$ or $H^1_0(\Omega)$, one expects that the four cases A1, A2, B1, B2 actually occur. However, to this day, *it remains on open problem*!

Thank	s!

Atomtronics

Cases A2 and B2: what's going on?

Thanks for your attention!

Thank	s!

Atomtronics

Cases A2 and B2: what's going on?

Thanks for your attention!

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

- Adami R., Serra E., Tilli P., *NLS ground states on graphs*, Calc. Var. 54, 743–761 (2015).
- Adami, R., Serra, E., Tilli, P. (2015). Lack of Ground State for NLSE on Bridge-Type Graphs. In: Mugnolo, D. (eds) Mathematical Technology of Networks. Springer Proceedings in Mathematics & Statistics, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-319-16619-3 1

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

- De Coster C., Dovetta S., Galant D., Serra E. On the notion of ground state for nonlinear Schrödinger equations on metric graphs. Calc. Var. 62, 159 (2023).
- De Coster C., Dovetta S., Galant D., Serra E., Troestler C., *Constant sign and sign changing NLS ground states on noncompact metric graphs*. ArXiV preprint: https://arxiv.org/abs/2306.12121.

Overviews of the subject

- Adami R. Ground states of the Nonlinear Schrodinger Equation on Graphs: an overview (Lisbon WADE). https://www.youtube.com/watch?v=G-FcnRVvoos (2020)
- Riccardo Adami, Enrico Serra, and Paolo Tilli.
 Nonlinear dynamics on branched structures and networks.
 Riv. Math. Univ. Parma (N.S.), 8(1):109–159, 2017.
- Kairzhan A., Noja D., Pelinovsky D. *Standing waves on quantum graphs.* J. Phys. A: Math. Theor. 55 243001 (2022)

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?
		•	

• A *boson*¹ is a particle with integer spin.

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.

 $^{^1\}mbox{Here}$ we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: *macroscopic quantum phenomenon!*

¹Here we will consider composite bosons, like atoms.

- A *boson*¹ is a particle with integer spin.
- When identical bosons are cooled down to a temperature very close to absolute zero, they occupy a *unique lowest energy quantum state*.
- This phenomenon is known at Bose-Einstein condensation.
- This is really remarkable: *macroscopic quantum phenomenon!*
- Since 2000: emergence of *atomtronics*, which studies circuits guiding the propagation of ultracold atoms.

¹Here we will consider composite bosons, like atoms.

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

$\mathcal{J}_\mathcal{G}(\lambda) = \sigma_\lambda(\mathcal{G})$ and neither infima is attained

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$$

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$$

According to the existence Theorems, $c_{\lambda}(\mathcal{G}, \mathcal{L}_n)$ is attained by a solution of $(NLS_{\mathcal{G}})$ for every *n* large enough.

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

- Cutting solitons on the loops, one sees that

$$c_{\lambda}(\mathcal{G},\mathcal{L}_n) \xrightarrow[n \to \infty]{} s_{\lambda}$$

According to the existence Theorems, c_λ(G, L_n) is attained by a solution of (NLS_G) for every n large enough.

One obtains

$$s_{\lambda} = \mathcal{J}_{\mathcal{G}}(\lambda) \leq \sigma_{\lambda}(\mathcal{G}) \leq \liminf_{n \to \infty} c_{\lambda}(\mathcal{G}, \mathcal{L}_n) = s_{\lambda},$$

SO

$$\mathcal{J}_{\mathcal{G}}(\lambda) = \sigma_{\lambda}(\mathcal{G}) = s_{\lambda}$$

and neither infimum is attained.

Damien Galant

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

$\mathcal{J}_{\mathcal{G}}(\lambda) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained

The loops \mathcal{L}_i have length N and \mathcal{B} is made of N edges of length 1.

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

A second, periodic, graph

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

What's going on in case B2? Two problems at infinity

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

What's going on in case B2? Two problems at infinity

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\lambda}(\tilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\tilde{\mathcal{G}}_{N}$).

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

What's going on in case B2? Two problems at infinity

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

• One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

What's going on in case B2? Two problems at infinity

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\lambda}(\mathcal{G}_{N}) = \sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\lambda}(\mathcal{G}_N)$ is not attained.

Thanks!	References	Atomtronics	Cases A2 and B2: what's going on?

What's going on in case B2? Two problems at infinity

Since \mathcal{G}_N and $\widetilde{\mathcal{G}}_N$ satisfy (H) and contain halflines, one has

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) = c_{\lambda}(\widetilde{\mathcal{G}}_N),$$

and neither infima is attained.

- One can show that, if N is large enough, then $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N})$ is attained (using the periodicity of $\widetilde{\mathcal{G}}_{N}$). Hence $\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}) > s_{\lambda}$.
- One then shows, using suitable rearrangement techniques, that

$$\sigma_{\lambda}(\mathcal{G}_{N})=\sigma_{\lambda}(\widetilde{\mathcal{G}}_{N}),$$

but that $\sigma_{\lambda}(\mathcal{G}_N)$ is not attained.

■ Therefore, for large *N*, we have that

$$s_{\lambda} = c_{\lambda}(\mathcal{G}_N) < \sigma_{\lambda}(\mathcal{G}_N),$$

and neither infima is attained, as claimed.